This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/dinic.hpp"
#include "template.hpp"
template<class T>
struct dinic {
const T INF;
struct edge {
int to,rev;
T cap;
bool isrev;
int idx;
};
int n;
vector<vector<edge>> graph;
vector<int> min_cost, iter;
dinic(int n): INF(numeric_limits<T>::max()), graph(n), n(n){}
void add_edge(int from, int to, T cap, int idx = -1){
graph[from].emplace_back((edge){to, (int)graph[to].size(), cap, false, idx});
graph[to].emplace_back((edge){from, (int)graph[from].size() - 1, 0, true, idx});
}
T max_flow(int s, int t){
T flow = 0;
while(bfs(s, t)){
iter.assign(n, 0);
T f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
private:
bool bfs(int s, int t){
min_cost.assign(n, -1);
queue<int> que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1){
int p = que.front();
que.pop();
for(auto &e : graph[p]){
if(e.cap > 0 && min_cost[e.to] == -1){
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
T dfs(int idx, const int t, T flow){
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++){
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]){
T d = dfs(e.to, t, min(flow, e.cap));
if(d > 0){
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
void debug(){
for(int i = 0; i < n; i++){
for(auto &e : graph[i]){
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};
#line 2 "graph/template.hpp"
/**
* @brief Graph Template
*/
template <class T>
struct Edge {
int from,to;
T cost;
int idx;
Edge(){};
Edge(int f, int t, T c=1, int i=-1) : from(f), to(t), cost(c), idx(i){}
Edge(int t) : to(t), from(-1), cost(1), idx(-1){}
operator int() const{ return to; }
bool operator<(const Edge &e){ return cost < e.cost; }
};
template <class T>
struct Graph : vector<vector<Edge<T>>> {
Graph(){}
Graph(const int &n) : vector<vector<Edge<T>>>(n){}
void add_edge(int a, int b, T c=1, int i=-1){
(*this)[a].push_back({ a, b, c, i });
}
};
using graph = Graph<int>;
#line 2 "graph/dinic.hpp"
template<class T>
struct dinic {
const T INF;
struct edge {
int to,rev;
T cap;
bool isrev;
int idx;
};
int n;
vector<vector<edge>> graph;
vector<int> min_cost, iter;
dinic(int n): INF(numeric_limits<T>::max()), graph(n), n(n){}
void add_edge(int from, int to, T cap, int idx = -1){
graph[from].emplace_back((edge){to, (int)graph[to].size(), cap, false, idx});
graph[to].emplace_back((edge){from, (int)graph[from].size() - 1, 0, true, idx});
}
T max_flow(int s, int t){
T flow = 0;
while(bfs(s, t)){
iter.assign(n, 0);
T f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
private:
bool bfs(int s, int t){
min_cost.assign(n, -1);
queue<int> que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1){
int p = que.front();
que.pop();
for(auto &e : graph[p]){
if(e.cap > 0 && min_cost[e.to] == -1){
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
T dfs(int idx, const int t, T flow){
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++){
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]){
T d = dfs(e.to, t, min(flow, e.cap));
if(d > 0){
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
void debug(){
for(int i = 0; i < n; i++){
for(auto &e : graph[i]){
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};