This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/check-bipartite.hpp"
#include "template.hpp"
#include "UnionFind.hpp"
template <class T>
bool is_bipartite(const Graph<T> &g){
const int n = g.size();
UnionFind tree(n * 2);
for(int i = 0; i < n; i++) for(const auto &x : g[i]){
tree.unite(x.from, x.to+n);
tree.unite(x.from+n, x.to);
}
for(int i = 0; i < n; i++) for(const auto &x : g[i]){
if(tree.same(x.from, x.to+n)) return false;
}
return true;
}
#line 2 "graph/template.hpp"
/**
* @brief Graph Template
*/
template <class T>
struct Edge {
int from,to;
T cost;
int idx;
Edge(){};
Edge(int f, int t, T c=1, int i=-1) : from(f), to(t), cost(c), idx(i){}
Edge(int t) : to(t), from(-1), cost(1), idx(-1){}
operator int() const{ return to; }
bool operator<(const Edge &e){ return cost < e.cost; }
};
template <class T>
struct Graph : vector<vector<Edge<T>>> {
Graph(){}
Graph(const int &n) : vector<vector<Edge<T>>>(n){}
void add_edge(int a, int b, T c=1, int i=-1){
(*this)[a].push_back({ a, b, c, i });
}
};
using graph = Graph<int>;
#line 1 "graph/UnionFind.hpp"
struct UnionFind {
private:
int n;
public:
vector<int> d;
UnionFind(int n): n(n), d(n, -1){}
int root(int x){
assert(0 <= x && x < n);
if(d[x] < 0) return x;
return d[x] = root(d[x]);
}
bool unite(int x, int y){
x = root(x);
y = root(y);
if(x == y) return false;
if(d[x] > d[y]) swap(x, y);
d[x] += d[y];
d[y] = x;
return true;
}
bool same(int x, int y){
return root(x) == root(y);
}
int size(int x){
return -d[root(x)];
}
};
#line 3 "graph/check-bipartite.hpp"
template <class T>
bool is_bipartite(const Graph<T> &g){
const int n = g.size();
UnionFind tree(n * 2);
for(int i = 0; i < n; i++) for(const auto &x : g[i]){
tree.unite(x.from, x.to+n);
tree.unite(x.from+n, x.to);
}
for(int i = 0; i < n; i++) for(const auto &x : g[i]){
if(tree.same(x.from, x.to+n)) return false;
}
return true;
}