This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/bellman-ford.hpp"
O(NM)
BellmanFord<T, const T&(*op)(const T&, const T&)>(const Graph<T> &r);
void solve(int s)
変数名[i]
で取得const T &operator[](const int i)
bool is_cycle(const int i)
#include "template.hpp"
template <class T, const T&(*op)(const T&, const T&)>
struct BellmanFord {
BellmanFord(const Graph<T> &r): root(r), n(r.size()){
inf = -op(inf, -inf);
res.assign(n, inf);
}
void solve(const int s){
assert(0 <= s && s < n);
res[s] = 0;
for(int i = 1; i < n; i++) for(int j = 0; j < n; j++){
if(res[j] != inf) for(const auto &x : root[j]){
res[x] = op(res[x], res[j] + x.cost);
}
}
vector<int> loop(n);
for(int i = 0; i < n; i++) for(int j = 0; j < n; j++){
if(res[j] != inf) for(const auto &x : root[j]){
if(op(res[x] + op(1,-1), res[j] + x.cost) == res[j] + x.cost){
res[x] = res[j] + x.cost;
loop[x] = 1;
}
if(loop[j]) loop[x] = 1;
}
}
for(int i = 0; i < n; i++) if(loop[i]) res[i] = -inf;
}
const T &operator[](const int i) const{
assert(0 <= i && i < n);
return res[i];
}
bool is_cycle(const int i) const{
assert(0 <= i && i < n);
return res[i] == -inf;
}
private:
const Graph<T> &root;
vector<T> res;
int n;
T inf = numeric_limits<T>::max()-1;
};
#line 2 "graph/template.hpp"
/**
* @brief Graph Template
*/
template <class T>
struct Edge {
int from,to;
T cost;
int idx;
Edge(){};
Edge(int f, int t, T c=1, int i=-1) : from(f), to(t), cost(c), idx(i){}
Edge(int t) : to(t), from(-1), cost(1), idx(-1){}
operator int() const{ return to; }
bool operator<(const Edge &e){ return cost < e.cost; }
};
template <class T>
struct Graph : vector<vector<Edge<T>>> {
Graph(){}
Graph(const int &n) : vector<vector<Edge<T>>>(n){}
void add_edge(int a, int b, T c=1, int i=-1){
(*this)[a].push_back({ a, b, c, i });
}
};
using graph = Graph<int>;
#line 2 "graph/bellman-ford.hpp"
template <class T, const T&(*op)(const T&, const T&)>
struct BellmanFord {
BellmanFord(const Graph<T> &r): root(r), n(r.size()){
inf = -op(inf, -inf);
res.assign(n, inf);
}
void solve(const int s){
assert(0 <= s && s < n);
res[s] = 0;
for(int i = 1; i < n; i++) for(int j = 0; j < n; j++){
if(res[j] != inf) for(const auto &x : root[j]){
res[x] = op(res[x], res[j] + x.cost);
}
}
vector<int> loop(n);
for(int i = 0; i < n; i++) for(int j = 0; j < n; j++){
if(res[j] != inf) for(const auto &x : root[j]){
if(op(res[x] + op(1,-1), res[j] + x.cost) == res[j] + x.cost){
res[x] = res[j] + x.cost;
loop[x] = 1;
}
if(loop[j]) loop[x] = 1;
}
}
for(int i = 0; i < n; i++) if(loop[i]) res[i] = -inf;
}
const T &operator[](const int i) const{
assert(0 <= i && i < n);
return res[i];
}
bool is_cycle(const int i) const{
assert(0 <= i && i < n);
return res[i] == -inf;
}
private:
const Graph<T> &root;
vector<T> res;
int n;
T inf = numeric_limits<T>::max()-1;
};