This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/matrix.hpp"
template <class T>
struct matrix {
int n,m;
private:
vector<vector<T>> a;
public:
matrix(const int n) : n(n), m(n), a(n, vector<T>(n)){}
matrix(const int n, const int m) : n(n), m(m), a(n, vector<T>(m)){}
matrix(const vector<vector<T>> &d) : a(d), n(d.size()), m(d[0].size()){}
vector<T> &operator[](const int i){ return a[i]; }
matrix &operator*=(const matrix &b){
assert(m == b.n);
vector<vector<T>> c(n, vector<T>(b.m));
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
for(int k = 0; k < b.m; k++){
c[i][k] += a[i][j] * b.a[j][k];
}
a = c;
return *this;
}
matrix &operator+=(const matrix &b){
assert(n == b.n && m == b.m);
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
a[i][j] += b.a[i][j];
return *this;
}
matrix &operator-=(const matrix &b){
assert(n == b.n && m == b.m);
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
a[i][j] -= b.a[i][j];
return *this;
}
matrix operator*(const matrix &b) const{ return matrix(*this) *= b; }
matrix operator+(const matrix &b) const{ return matrix(*this) += b; }
matrix operator-(const matrix &b) const{ return matrix(*this) -= b; }
matrix pow(ll t) const{
assert(n == m);
matrix<T> b(n), c = *this;
for(int i = 0; i < n; i++) b[i][i] = 1;
while(t > 0){
if(t & 1) b *= c;
c *= c;
t >>= 1;
}
return b;
}
T det() const{
assert(n == m);
matrix b = *this;
T res(1);
bool flip = false;
for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j++){
while(b[j][i] > 0){
swap(b[i], b[j]);
flip ^= 1;
const T d = b[j][i] / b[i][i];
for(int k = i; k < n; k++){
b[j][k] -= b[i][k] * d;
}
}
}
if(b[i][i] == 0) return 0;
res *= b[i][i];
}
if(flip) res = -res;
return res;
}
matrix inv(){
assert(n == m);
matrix b(n), c = *this;
for(int i = 0; i < n; i++) b[i][i] = 1;
int r = 0;
for(int i = 0; i < n && r < n; i++){
if(c[r][i] == 0){
T max_val = 0; int mx_pos;
for(int j = r+1; j < n; j++){
if(max_val < c[j][i]) max_val = c[j][i], mx_pos = j;
}
if(max_val == 0) return false;
swap(c[r], c[mx_pos]); swap(b[r], b[mx_pos]);
}
T d = T(1) / c[r][i];
for(int j = 0; j < n; j++) c[r][j] *= d, b[r][j] *= d;
for(int j = 0; j < n; j++){
T v = c[j][i];
if(j == r || c[j][i] == 0) continue;
for(int k = 0; k < n; k++){
c[j][k] -= c[r][k] * v;
b[j][k] -= b[r][k] * v;
}
}
r++;
}
return b;
}
int size() const{ return n; }
void debug(){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++) cerr << a[i][j] << " ";
cerr << "\n";
}
}
};
#line 1 "math/matrix.hpp"
template <class T>
struct matrix {
int n,m;
private:
vector<vector<T>> a;
public:
matrix(const int n) : n(n), m(n), a(n, vector<T>(n)){}
matrix(const int n, const int m) : n(n), m(m), a(n, vector<T>(m)){}
matrix(const vector<vector<T>> &d) : a(d), n(d.size()), m(d[0].size()){}
vector<T> &operator[](const int i){ return a[i]; }
matrix &operator*=(const matrix &b){
assert(m == b.n);
vector<vector<T>> c(n, vector<T>(b.m));
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
for(int k = 0; k < b.m; k++){
c[i][k] += a[i][j] * b.a[j][k];
}
a = c;
return *this;
}
matrix &operator+=(const matrix &b){
assert(n == b.n && m == b.m);
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
a[i][j] += b.a[i][j];
return *this;
}
matrix &operator-=(const matrix &b){
assert(n == b.n && m == b.m);
for(int i = 0; i < n; i++) for(int j = 0; j < m; j++)
a[i][j] -= b.a[i][j];
return *this;
}
matrix operator*(const matrix &b) const{ return matrix(*this) *= b; }
matrix operator+(const matrix &b) const{ return matrix(*this) += b; }
matrix operator-(const matrix &b) const{ return matrix(*this) -= b; }
matrix pow(ll t) const{
assert(n == m);
matrix<T> b(n), c = *this;
for(int i = 0; i < n; i++) b[i][i] = 1;
while(t > 0){
if(t & 1) b *= c;
c *= c;
t >>= 1;
}
return b;
}
T det() const{
assert(n == m);
matrix b = *this;
T res(1);
bool flip = false;
for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j++){
while(b[j][i] > 0){
swap(b[i], b[j]);
flip ^= 1;
const T d = b[j][i] / b[i][i];
for(int k = i; k < n; k++){
b[j][k] -= b[i][k] * d;
}
}
}
if(b[i][i] == 0) return 0;
res *= b[i][i];
}
if(flip) res = -res;
return res;
}
matrix inv(){
assert(n == m);
matrix b(n), c = *this;
for(int i = 0; i < n; i++) b[i][i] = 1;
int r = 0;
for(int i = 0; i < n && r < n; i++){
if(c[r][i] == 0){
T max_val = 0; int mx_pos;
for(int j = r+1; j < n; j++){
if(max_val < c[j][i]) max_val = c[j][i], mx_pos = j;
}
if(max_val == 0) return false;
swap(c[r], c[mx_pos]); swap(b[r], b[mx_pos]);
}
T d = T(1) / c[r][i];
for(int j = 0; j < n; j++) c[r][j] *= d, b[r][j] *= d;
for(int j = 0; j < n; j++){
T v = c[j][i];
if(j == r || c[j][i] == 0) continue;
for(int k = 0; k < n; k++){
c[j][k] -= c[r][k] * v;
b[j][k] -= b[r][k] * v;
}
}
r++;
}
return b;
}
int size() const{ return n; }
void debug(){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++) cerr << a[i][j] << " ";
cerr << "\n";
}
}
};