This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/isprime.hpp"
using ull = unsigned long long;
inline ull modmul(ull a, ull b, ull m) noexcept{
ll ret = a * b - m * ull(1.L / m * a * b);
return ret + m * (ret < 0) - m * (ret >= (ll)m);
}
inline ull modpow(ull b, ull e, ull m) noexcept{
ull ans = 1;
for(; e; b = modmul(b, b, m), e >>= 1)
if(e & 1) ans = modmul(ans, b, m);
return ans;
}
bool is_prime(const ull n){
if(n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
static constexpr ull A[] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
const ull s = __builtin_ctzll(n - 1), d = n >> s;
for(ull a : A){ // ^ count trailing zeroes
ull p = modpow(a % n, d, n), i = s;
while(p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);
if(p != n - 1 && i != s) return false;
}
return true;
}
#line 1 "math/isprime.hpp"
using ull = unsigned long long;
inline ull modmul(ull a, ull b, ull m) noexcept{
ll ret = a * b - m * ull(1.L / m * a * b);
return ret + m * (ret < 0) - m * (ret >= (ll)m);
}
inline ull modpow(ull b, ull e, ull m) noexcept{
ull ans = 1;
for(; e; b = modmul(b, b, m), e >>= 1)
if(e & 1) ans = modmul(ans, b, m);
return ans;
}
bool is_prime(const ull n){
if(n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
static constexpr ull A[] = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };
const ull s = __builtin_ctzll(n - 1), d = n >> s;
for(ull a : A){ // ^ count trailing zeroes
ull p = modpow(a % n, d, n), i = s;
while(p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);
if(p != n - 1 && i != s) return false;
}
return true;
}